
135

7 Number Theory

7.1 Introduction

The basic arithmetic operations we have learned in primary school are addition, sub-
traction, multiplication, and division on natural numbers. These operations are mean-
ingful, not only for numbers, but also for more general objects, like functions and, in
particular, polynomials. Some properties of the arithmetic operations remain valid in
these more general structures, whereas other properties lose their validity.

In this chapter we study some of the properties of integer numbers, which are
the numbers · · · ,−2 ,−1 , 0 , 1 , 2 , 3 , · · · . The set of these numbers is called Z ; it
has the set N of the natural numbers 0 , 1 , 2 , 3 , · · · as a subset. So, N includes
0 . In the earlier days of mathematics 0 was not considered a natural number, but
if we “define” the natural numbers as the numbers used for counting then 0 is a
very natural number: at the moment I write this, for instance, I have 0 coins in my
pocket. (As a child I have learned that “zero is nothing”, but this is not true, of
course: although I have 0 coins in my pocket, it is not empty: it contains 0 coins
but 1 handkerchief and 1 keyring holding 5 keys.) Also, at any given moment my
wallet may contain 3 Euros and 0 U.S. dollars. Moreover, 0 has the, very important,
algebraic property that it is the identity element of addition: x+0 = x , for all x∈N
(and also for x in Z ,Q ,R , of course). In addition, the natural numbers have the
property that every natural number is equal to the number of its predecessors, where
the predecessors of x are all natural numbers less than x : for every x∈N , we have
that x is equal to the number of elements of the set {y∈N | y<x} , and this is also
true if x= 0 .

The set of positive naturals is denoted by N+ ; it equals N but without 0 , so we
have N+ = N\{0} . When we discuss the prime numbers we will have need of the
set of all natural numbers that are at least 2 , so this is N without 0 and 1 . We will
call such numbers “multiples” and denote its set as N+2 . So, N+2 = N\{0 , 1} .

7.2 Divisibility

We start our subject with an exploration of divisibility and its, hopefully well-known,
properties.

7.1 Definition. For a, d∈Z we say that “ a is divisible by d ” or, equivalently, that “ a
is a multiple of d ” or, equivalently, “ d is a divisor of a ” if and only if:

(∃q : q∈Z : a = q ∗ d ) .
2

By this definition, every integer is a divisor of 0 , even 0 itself, although 0/0 is not
defined! If, however, d 6= 0 , then for every a∈Z the value q , if it exists, for which
a = q ∗ d is unique, and we write it as a/d , called the “quotient of” a and d . So,
note that a/d is well-defined if and only if both a is divisible by d and d 6= 0 .
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Other simple properties are that every integer is divisible by 1 and by itself, and, as
a consequence, 1 is a divisor of every integer.

The relation “is a divisor of” is often denoted by the (infix) symbol | . That
is, we write d |a for the proposition “ d is a divisor of a ”. Then, as we have seen
earlier, (N+ , | ) is a poset: the relation | is reflexive, anti-symmetric, and transitive.

7.2 Lemma. (∀a, d : a, d∈N+ : d |a ⇒ d≤ a ) .

Proof. If d |a for d, a ∈ N+, then a = q ∗ d for some integer q. Since d, a ∈ N+ this is
only possible for q ≥ 1, so a− d = q ∗ d− d = (q − 1) ∗ d ≥ 0. �

A direct consequence of Lemma 7.2 is that the set of all (positive) divisors of
a positive natural number is finite: the set of divisors of a∈N+ is a subset of the
(finite) interval [ 1 , a ] . Because 1 |a the set of divisors of a is non-empty, for every
a∈N+ .
Another important property of divisibility (by d ) is that it is invariant under addition
of multiples (of d ) . We call this a translation property .

7.3 Lemma. (∀a, d, x : a, d∈N+ ∧ x∈Z : d |a ⇔ d | (a+x ∗ d) ) .

Proof. If d |a then a = q∗d for some integer q. Hence a+x∗d = q∗d+x∗d = (q+x)∗d.
Since both q and x are integer, so is q + x, hence d | (a+ x ∗ d).

Conversely, assume d | (a+x∗d). Then a+x∗d = q ∗d for some integer q. Hence
a = q ∗ d− x ∗ d = (q − x) ∗ d. Since both q and x are integer, so is q − x, hence d |a.
�

* * *

We have seen that not every number is divisible by every other number: a/d is not
defined for all a, d , even if d 6= 0 . Division can, however, be defined more generally, if
only we allow the possibility of a, so-called, remainder . For the sake of this discussion
we restrict ourselves to positive d , so d∈N+ .

The equation, with q ∈Z as the unknown, a = q ∗ d may not have a solution,
but we can weaken the equation in such a way that it has a solution, and then the
solution still happens to be unique.

7.4 Theorem. For all a∈Z and d∈N+ unique integers q, r exist satisfying:

a = q ∗ d+r ∧ 0≤ r< d .

Proof. We prove existence of the solution and its uniqueness separately.
Existence. We distinguish the cases 0≤ a and a< 0 . For the first case we prove, for
all a∈N , existence of a solution by Mathematical Induction on a . Firstly, if a< d ,
then q= 0 and r= a are a solution. Secondly, if d≤ a then a−d ∈N and, because
1≤ d , we have a−d< a . Now, we assume, by Induction Hypothesis, that q and r
satisfy:
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a−d = q ∗ d+r ∧ 0≤ r< d .

Then we also have:

a = (q+1) ∗ d+r ∧ 0≤ r< d ,

hence, q+1 and r are a solution for a and d .
The proof for the case a< 0 is very similar, but now by Mathematical Induction on
−a . Firstly, if −d≤ a then q =−1 and r = a+d are a solution. Secondly, if a≤−d
then we have a+d< 0 and −(a+d) <−a . So let, again by Induction Hypothesis, q
and r satisfy:

a+d = q ∗ d+r ∧ 0≤ r< d .

Then we also have:

a = (q−1) ∗ d+r ∧ 0≤ r< d ,

hence, now q−1 and r are a solution for a and d .

Uniqueness. Assume that q0 and r0 satisfy: a = q0 ∗ d + r0 ∧ 0≤ r0 < d , and, simi-
larly, assume that q1 and r1 satisfy: a = q1 ∗ d + r1 ∧ 0≤ r1 < d . To prove unique-
ness of the solution, then, we must prove q0 = q1 and r0 = r1 . We now derive:

a = q0 ∗ d + r0 ∧ a = q1 ∗ d + r1

⇒ { transitivity of = }
q0 ∗ d + r0 = q1 ∗ d + r1

⇔ { algebra }
r0− r1 = (q1−q0) ∗ d ,

from which we conclude that r0− r1 is a multiple of d . From the restrictions on
r0 and r1 , in the above equations, however, it follows that −d < r0−r1 < +d , and
the only multiple of d in this range is 0 . So, we conclude that r0− r1 = 0 , which is
equivalent to r0 = r1 . But now we also have (q1−q0) ∗ d = 0 , which, because d 6= 0 ,
is equivalent to q0 = q1 , as required.
�

7.5 Definition. The unique value q mentioned in the theorem is called the “quotient of”
a and d , and is denoted as a div d . The unique value r mentioned in the theorem
is called the “remainder of” a and d , and is denoted as amod d . As a result we
obtain the following relation for div and mod , which we consider their definition,
albeit an implicit one:

a = (adivd) ∗ d + amodd ∧ 0≤ amodd< d .
2

warning: Most programming languages have operators for quotient and remain-
der, even for negative values of d . The definitions of these operators not
always are consistent with the definition given here. They do, however, al-
ways yield values q and r that satisfy a = q ∗ d+r , but differences may
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arise in the additional restrictions imposed upon r . If both a and d are
natural, however, so 0≤ a and 1≤ d , then the operators for quotient and
remainder yield the same values as a div d and amod d as defined here. Be
careful, though, in cases where either a or d may be negative. In particular,
for negative a or d , the operations in several programming languages do
not have the translation properties in Lemma 7.7

2

Operators div and mod are a true generalization of division, as they have the
following properties that are immediate from the definitions.

7.6 Lemma. For all a∈Z and d∈N+ we have:

amodd= 0 ⇔ d |a , and:

amodd= 0 ⇒ adivd = a/d .
2

Operators div and mod have many other useful properties, such as the following, so-
called, translation properties. For more properties we refer the reader to the exercises.

7.7 Lemma. For all a∈Z and d∈N+ , and for all x∈Z we have:

(a+x ∗ d) div d = a div d + x , and:

(a+x ∗ d) mod d = amod d

Proof. a + x ∗ d = (adivd)∗ d + amodd + x ∗ d = ((adivd) + x)∗ d + amodd, due to
0 ≤ amodd < d and unicity as stated in Theorem 7.4 we conclude the lemma. �

7.3 Greatest common divisors

In this section we consider positive natural numbers only. Throughout this chapter we
use names a, b, c, d for variables of type N+ and variables x, y, z to denote variables
of type Z .

As we have seen already in Lemma 7.2 the set of (positive) divisors of a∈N+ is
non-empty, as it contains 1 and a , and it is finite. We denote this set as D(a) .

7.8 Definition. For a∈N+ the set D(a) of (positive) divisors of a is defined by:

D(a) = {d∈N+ | d |a} .

2

For all a, b∈N+ their respective sets D(a) and D(b) have a non-empty intersection,
because both contain 1 , and this intersection is finite as well. The elements of the
set D(a) ∩ D(b) are called common divisors of a and b . As an abbreviation we also
denote this intersection as D(a, b) . So, by definition D(a, b) satisfies:
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D(a, b) = { d∈N+ | d |a ∧ d |b } .

Because D(a, b) is non-empty and finite it has a maximum. This maximum is called
the greatest common divisor of a and b . This depends on a and b , of course, so it
is a function, which we call gcd .

7.9 Definition. Function gcd , of type N+×N+→N+ , is defined by, for all a, b∈N+ :

gcd(a, b) = maxD(a, b) ,

or, stated in words, gcd(a, b) is the greatest number of which both a and b is a divisor.
2

The common divisors of a and a itself just are the divisors of a , that is, we have
D(a, a) = D(a) ; hence the greatest common divisor of a and a itself just is the great-
est divisor of a , which is a . If b< a then a−b∈N+ , and on account of translation
Lemma 7.3, we conclude that D(a, b) = D(a−b , b) . In words: if b< a then a and b
have the same common divisors as a−b and b ; hence, their greatest common divi-
sors are equal as well. Similarly, if a< b then D(a, b) = D(a , b−a) and the greatest
common divisor of a and b is equal to the greatest common divisor of b and b−a .
Thus we obtain the following lemma.

7.10 Lemma. For all a, b∈N+ :

gcd(a, a) = a
gcd(a, b) = gcd(a−b , b) , if b< a
gcd(a, b) = gcd(a , b−a) , if a< b

2

Greatest common divisors also have the following, quite surprising, property that the
common divisors of a and b are the divisors of gcd(a, b) .

7.11 Lemma. For all a, b, c∈N+ with c = gcd(a, b) :

D(a, b) = D(c) .

Proof. By Mathematical Induction on the value a+b . Firstly, if a = b then, as we
have seen, D(a, b) = D(a) and, by Lemma 7.10, we have c = a , so also D(c) = D(a) ;
hence, D(a, b) = D(c) . Secondly, if b< a then, as we have seen, D(a, b) = D(a−b , b) ,
and, by Lemma 7.10, we have c = gcd(a−b , b) ; now we assume, by Induction Hypoth-
esis – because (a−b) +b < a+b – that D(a−b , b) = D(c) ; then it also follows that
D(a, b) = D(c) . Thirdly, the case a< b is similar to the previous case, because the
situation is symmetric in a and b .
�

A direct consequence of translation Lemma 7.3 is that every common divisor of a
and b also is divisor of any linear combination of a and b .
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7.12 Lemma. For all a, b, d∈N+ and for all x, y ∈Z :

d |a ∧ d |b ⇒ d | (x∗a+y∗b) .
2

In particular, gcd(a, b) is a common divisor of a and b ; hence, gcd(a, b) also is a
divisor of every linear combination of a and b . There is more to this, however, as
the following theorem shows.

7.13 Theorem. For all a, b∈N+ , integers x, y ∈Z exist satisfying:

gcd(a, b) = x ∗ a + y ∗ b

Proof. A constructive proof is given in the next section, in the form of Euclid’s
extended algorithm, which shows how suitable numbers x and y can be calculated.
�

A consequence of this theorem is that gcd(a, b) is the smallest of all positive linear
combinations of a and b .

7.14 Theorem. For all a, b∈N+ we have:

gcd(a, b) = min { x∗a+y∗b | x, y∈Z ∧ 1≤x∗a+y∗b } .

Proof. Let xm and ym be integers for which xm ∗ a+ ym ∗ b is positive and minimal.
Let c = gcd(a, b) and let xc and yc be integers for which c = xc ∗ a+ yc ∗ b ; on
account of Theorem 7.13 such numbers exist. Now we must prove: c = xm ∗ a+ ym ∗ b ,
which we do by proving c ≤ xm ∗ a+ ym ∗ b and xm ∗ a+ ym ∗ b ≤ c separately:

c ≤ xm ∗ a+ ym ∗ b

⇐ { Lemma 7.2, using that both c and xm ∗a+ym ∗b are positive }
c | (xm ∗ a+ ym ∗ b)

⇐ { Lemma 7.12 }
c | a ∧ c | b

⇔ { c= gcd(a, b) }
true ,

and:

xm ∗ a+ ym ∗ b ≤ c

⇔ { definition of xc and yc }
xm ∗ a+ ym ∗ b ≤ xc ∗ a+ yc ∗ b

⇔ { both sides of the inequality are positive, and the LHS is minimal }
true

�
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* * *

Numbers of which the greatest common divisor equals 1 are called relatively prime
or also co-prime. As we have seen – Theorem 7.13 – , for all a, b∈N+ integers x, y
exist such that

gcd(a, b) = x ∗ a + y ∗ b .

If gcd(a, b) = 1 this amounts to the existence of integers x and y satisfying:

x ∗ a + y ∗ b = 1 .

The following two lemmas are useful consequences of this property.

7.15 Lemma. For all a, b, c∈N+ : gcd(a, b) = 1 ∧ a | (b ∗ c) ⇒ a | c .

Proof. Let gcd(a, b) = 1 and let a | (b ∗ c) ; that is, assume that x, y, z ∈Z satisfy:

(15) x ∗ a + y ∗ b = 1

(16) b ∗ c = z ∗ a

Now we derive:

true

⇔ { (15) }
x ∗ a + y ∗ b = 1

⇒ { Leibniz }
x ∗ a ∗ c + y ∗ b ∗ c = c

⇔ { (16) }
x ∗ a ∗ c + y ∗ z ∗ a = c

⇔ { algebra }
(x ∗ c + y ∗ z ) ∗ a = c

⇒ { ∃ -introduction, with q := x ∗ c+y ∗ z }
(∃q : q∈Z : c = q ∗ a )

⇔ { Definition of | }
a | c

�

7.16 Lemma. For all a, b, c∈N+ : gcd(a, b) = c ⇒ gcd(a/c , b/c) = 1 .

2
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7.4 Euclid’s algorithm and its extension

The relations in Lemma 7.10 can be considered as a recursive definition of function
gcd ; that, thus, function gcd is well-defined is, again, proved by Mathematical In-
duction on the value a+b . So, the following recursive definition actually constitutes
an algorithm for the computation of the greatest common divisor of two positive
naturals. This is known as “Euclid’s algorithm”. For all a, b∈N+ :

gcd(a, b) = if a= b → a
[] a> b → gcd(a−b , b)
[] a< b → gcd(a , b−a)
fi

This version of the algorithm is not particularly efficient , but it is the simplest pos-
sible. If, for instance, a is very much larger than b the calculation of gcd(a, b) gives
rise to the repeated subtraction a−b , until a does not exceed b anymore. Therefore,
a more efficient algorithm can be constructed by means of div and mod operations.

* * *

According to Theorem 7.13 we have that gcd(a, b) is a linear combination of a and
b ; this means that, for every a, b∈N+ , integers x, y exist satisfying:

(17) gcd(a, b) = x ∗ a + y ∗ b .

In what follows we call such integers “matching numbers” for gcd(a, b) . Matching
numbers are not unique: if, for instance, x and y are matching numbers for gcd(a, b)
then so are x+b and y−a .

Because Theorem 7.13 is about existence of integers, we can try to prove it
constructively by showing how these numbers can be computed. It so happens that
Euclid’s algorithm can be extended in such a way that, in addition to gcd(a, b) ,
integers x and y are calculated that satisfy (17) as well. As a result, provided we
have proved the correctness of the extended algorithm, we not only have a proof of
the theorem but we also obtain an algorithm to compute these numbers. (And, from
the point of view of proving the theorem, efficiency is of no concern and the simplest
possible algorithm yields the simplest possible proof.)

As was the case with function gcd we present Euclid’s extended algorithm in the
form of a recursively defined function. For this purpose we simply call this function
F here; it maps a pair of positive naturals to a triple consisting of a positive natural
and two integers, namely the GCD of the pair together with matching numbers. We
denote such a triple as 〈 c , x , y 〉 , in which c , x , and y are the elements of the triple.
This means that function F is required to satisfy the following specification.

specification: Function F has type N+×N+→ N+×Z×Z , and for all a, b, c∈N+

and for all x, y ∈Z , function F satisfies:

F (a, b) = 〈 c , x , y 〉 ⇒ c = gcd(a, b) ∧ c = x ∗ a+ y ∗ b
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2

Notice that this specification does not specify F uniquely: because, as we have
seen, matching numbers are not unique, several different functions F will satisfy this
specification. This specification only states, firstly, that for every pair of positive
naturals a and b its value F (a, b) is a triple consisting of a positive natural and two
integers, and, secondly, that for every such triple its first element is equal to gcd(a, b)
and its second and third elements are matching numbers for gcd(a, b) .

A simple recursive definition for F can now be constructed, based on the fol-
lowing considerations, using Mathematical Induction on a+b again. Firstly, if a= b
then gcd(a, b) = a , and a = 1 ∗ a+ 0 ∗ b : hence, in this case x= 1 and y= 0 is an
acceptable solution for x and y . Because a= b we also have gcd(a, b) = b ; therefore,
x= 0 and y= 1 is an acceptable solution too: this illustrates once more that the
numbers x and y are not unique.

Secondly, if a> b then we have gcd(a, b) = gcd(a−b , b) . Now suppose, by In-
duction Hypothesis, that x, y are integers satisfying:

gcd(a−b , b) = x ∗ (a−b) + y ∗ b .

The right-hand side of this equality can be rewritten to:

gcd(a−b , b) = x ∗ a + (y−x) ∗ b ,

and because gcd(a, b) = gcd(a−b , b) this is equivalent to:

gcd(a, b) = x ∗ a + (y−x) ∗ b .

From this we conclude that if x and y are matching numbers for gcd(a−b , b) then
x and y−x are matching numbers for gcd(a, b) .

Finally and similarly, for the case a< b we can show that if x and y are matching
numbers for gcd(a , b−a) then x−y and y are matching numbers for gcd(a, b) .

We now combine these results into the following recursive definition for F ; this
we call Euclid’s extended algorithm:

F (a, b) = if a= b → 〈 a , 1 , 0 〉
[] a> b → 〈 c , x , y−x 〉

where 〈 c , x , y 〉 = F (a−b , b)

[] a< b → 〈 c , x−y , y 〉
where 〈 c , x , y 〉 = F (a , b−a)

fi

This recursive definition is an example of a, so-called, functional program, but it is not
difficult to encode this as a recursive function in languages like PASCAL or JAVA. As
was the case with Euclid’s algorithm proper, this algorithm is not very efficient, but
it can be transformed into a more efficient one by means of division and remainder
operations.
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When applying this version of Euclid’s algorithm or its extension to compute
the gcd of, for instance, 1 and one million, the number one will be subtracted from
the other number nearly one million times. As this example already shows, the
complexity of the algorithm will not be better than linear in the arguments, which is
not acceptable for applications in which the argument may be very large, as e.g. in
cryptography. Now we present an improvement for which the complexity is improved
to be logarithmic in the size of the arguments, by which it is suitable for using it for
arguments in the order of magnitude of 101000. This improved version is one of the
building blocks of modern public key cryptography.

The key ingredient of Euclid’s algorithm as presented is that gcd(a, b) = gcd(a, b−
a), for b > a > 0. However, we also have gcd(a, b) = gcd(a, b − c ∗ a) for any choice
for c we like, satisfying c ∗ a ≤ b. In the above version c = 1 was chosen, while the
improved version takes c = bdiva. A first attempt looks as follows:

gcd(a, b) = if a= b → a
[] a> b → · · ·
[] a< b → gcd(a , b−(bdiva) ∗ a)
fi

This we will work out further. Note that b−(bdiva) ∗ a = bmoda. A further
difference with our first version is that in case a is a divisor of b, we obtain b−(bdiva)∗
a = 0, and the resulting b−(bdiva) ∗ a = bmoda is always < a. By keeping the first
argument always less than the second argument, we now may further polish our
algorithm without case analysis on a > b and a < b. The resulting algorithm for
gcd(a, b) for 0 ≤ a < b reads:

gcd(a, b) = if a= 0 → b
[] a> 0 → gcd(bmoda, a)
fi

This version correctly computes gcd(a, b) for a < b by construction, while now
the worst case complexity can be shown to be logarithmic in the largest argument b.

Also the extended version can be modified in this way:

F (a, b) = if a= 0 → 〈 b , 0 , 1 〉
[] a> 0 → 〈 c , y − x ∗ (bdiva) , x 〉

where 〈 c , x , y 〉 = F (bmoda , a)

fi

Here for 0 ≤ a < b the result of F (a, b) is a triple (c, x, y) in which c = gcd(a, b)
and x∗a+y ∗b = c. Also this algorithm can be shown to be logarithmic in the largest
argument b since the number of steps is the same as for the basic gcd algorithm.
Correctness follows since from c = x ∗ (bmoda) + y ∗ a one concludes c = (y − x ∗
(bdiva)) ∗ a + x ∗ b. This is the version of the algorithm that is extensively used in
practice.
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To get a feeling how the algorithm works we apply it by hand to compute values
x, y satisfying 73x + 87y = 1 = gcd(73, 87). In order to compute F (73, 87) by the
algorithm we have to compute F (14, 73) since 87mod73 = 14, for which we have to
compute F (3, 14), and so on, until we arrive at F (0, 1) = (1, 0, 1). In fact executing
the algorithm corresponds to filling the following table:

a b x y c = x ∗ a+ y ∗ b
73 87 31 −26 1
14 73 −26 5 1
3 14 5 −1 1
2 3 −1 1 1
1 2 1 0 1
0 1 0 1 1

Here first the columns for a and b are filled from top to bottom. Then in the last
line x = 0 and y = 1 is filled, yielding c = x ∗ a+ y ∗ b = 1. Next the values for x and
y are filled from bottom to top in such a way that for every line x∗a+y ∗ b = 1 holds:
according to the algorithm this is done by giving y the value of x from the line below,
and giving x the value y − x ∗ (bdiva). At the end we fill the first line by x = 31 and
y = −26, indeed satisfying the required property 73∗31+87∗(−26) = 1 = gcd(73, 87).

7.5 The prime numbers

In this section we study the set N+2 of multiples, which are the natural numbers
from 2 onwards. As we have seen, every integer, and, hence, also every multiple is
divisible by 1 and by itself. A multiple with the property that it is not divisible by
any other number is called a prime (number).

7.17 Definition. A prime is a multiple that is divisible by 1 and itself only.
2

If we would not restrict ourselves to multiples but to positive naturals instead, 1
would be a prime too, according to this definition. There are sound, technical reasons,
however, not to consider 1 as a prime, which is why we define the primes as a subset
of the multiples. So, the smallest prime is 2 .

7.18 Example. The primes less than 100 are: 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41
43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 . Notice that 2 is even and that it is the
only even prime.
2

The following lemma expresses that every multiple is divisible by at least one prime.
If we would have allowed 1 as a prime number this lemma would have been void.

7.19 Lemma. For every a∈N+2 a prime p exists such that p |a .

Proof. By Mathematical Induction on a . Firstly, if a is a prime then a is a prime
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and a |a . Secondly, if a is not prime then a multiple b∈N+2 exists satisfying b 6= a ,
and b |a . From Lemma 7.2, using b |a , we conclude that b≤ a , but because b 6= a
this amounts to b< a . So, by Induction Hypothesis, we may assume that p is a prime
such that p |b . Because b |a , by the transitivity of divisibility, we then conclude p |a ,
as required.
�

The following theorem is important; it has been proved already by Euclides.

7.20 Theorem. The set of all primes is infinite.
Proof. One way to prove that a set is infinite is to prove that every finite subset of
it differs from the whole set; that is, for every finite subset the whole set contains an
element not in that subset. So, let V be a finite subset of the primes. Now we define
multiple a by:

a = (Πp : p∈V : p ) + 1 .

Because the product (Πp : p∈V : p ) is divisible by every p∈V , the number a is not
divisible by p , for every p∈V . On account of Lemma 7.19, however, a is divisible
by at least one prime, which therefore, is not an element of V .
�

* * *

A very old algorithm to compute “all” primes is known as Eratosthenes’s sieve. This
involves infinite enumerations of infinite subsets of the multiples, which is unfeasible,
of course, but for the purpose of computing any finite number of primes, finite prefixes
of these infinite enumerations will do. To compute all, infinitely many, primes would,
of course, take an infinite amount of time. Yet, we call it an algorithm to compute
“all” primes because it can be used to compute as many primes as desired in a finite
amount of time.

Informally, the algorithm is presented as follows. One starts with writing down
all – that is: sufficiently many – multiples in increasing order:

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , · · · .

The first number of this sequence, 2 , is the first prime number, and we now construct
a new sequence from the first one by eliminating all multiples of 2 from it:

3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 , 21 , 23 , · · · .

This second sequence is an enumeration, again in increasing order, of all multiples that
are not divisible by the first prime, 2 . The first number, 3 , of this second sequence
is the second prime, and, again, we construct a third sequence from this second one,
this time by eliminating all multiples of 3 :
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5 , 7 , 11 , 13 , 17 , 19 , 23 , · · · .

This sequence contains all multiples that are not divisible by either 2 or 3 ; its first
element, 5 , is the next prime number, which is the smallest prime that is larger than
2 and 3 . And so on. . .

The general properties on account of which this algorithm is correct are easily
formulated. After n steps, for some n∈N , a sequence is obtained that contains, in
increasing order, all multiples that are not divisible by the smallest n prime numbers.
The first number of this sequence then, because the sequence is increasing, is its
minimum, and it can be proved that this minimum is the next prime, that is, the
smallest prime number exceeding the smallest n prime numbers. By eliminating all
multiples of this next prime the next sequence is obtained, containing all multiples
not divisible by the first n+1 primes.

* * *

We have seen that the set of primes is infinite, but we may still ask for the density
of the primes; that is, for any given multiple n we may ask how many primes are
less than n . Because the number of potential divisors of n increases with n , the
likelihood – not in the mathematical meaning of the word – that an arbitrary number
is prime may be expected to decrease with increasing numbers.

The, so-called, Prime Number Theorem states that the number of primes less than
n is approximately n/ ln(n) . This formula really gives an approximation only; for
example, the number of primes less than 109 equals 50 847 534 , whereas 109/ ln(109)
is 48 254 942 (rounded). An elementary proof of the Prime Number Theorem has been
constructed by the famous Hungarian mathematician Pál Erdös.

The greatest common divisor of a prime p and a positive natural a can have
only one out of two possible values: either p |a and then gcd(p, a) = p , or ¬ (p |a)
and then gcd(p, a) = 1 . An important consequence of this is the following lemma.

7.21 Lemma. For every prime p and for all a, b∈N+ : p | (a∗b) ⇒ p |a ∨ p |b .

Proof. By distinguishing the cases p |a and ¬ (p |a) and, for the latter case, using
Lemma 7.15 and gcd(a, p) = 1 if ¬ (p |a) .

�

7.22 Lemma. If p, q are distinct prime numbers and k ≥ 0, then q is not a divisor of pk.

Proof. Induction on k. For k = 0 clearly q is not a divisor of pk = p0 = 1. For
k > 0 we write pk = p ∗ pk−1. If q |p ∗ pk−1 then by Lemma 7.15 and gcd(p, q) = 1 we
conclude q |pk−1, contradicting the induction hypothesis. �

The following theorem is known as the Unique Prime Factorization Theorem.
Just like we write Σ for summation, we write Π for product. We even take infinite
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products over all prime numbers as long as all but finitely many are equal to 1: then
the meaning of the product is the product of the remaining finitely many arguments.

7.23 Theorem. Every positive natural a∈N+ satisfies

a =
∏

p prime
pk(p,a)

in which k(p, a) is the largest number k such that pk |a, for every prime number p.

Proof. We apply induction on a. For a = 1 we have k(p, a) = 0 for all prime
numbers, indeed yielding 1 = Πp primep

k(p,1).
For a > 1 by Lemma 7.19 a prime q exists such that q |a. We will apply the

induction hypothesis on a/q, yielding a/q = Πp primep
k(p,a/q), and we will compare

k(p, a/q) with k(p, a) for all primes p. Since qk(q,a/q) |a/q but not qk(q,a/q)+1 |a/q, we
obtain qk(q,a/q)+1 |a but not qk(q,a/q)+2 |a, so k(q, a) = k(q, a/q) + 1.

Next let p be any prime number unequal to q and k any number > 0. We will
prove pk |a if and only if pk |a/q. If pk |a/q then a/q = b ∗ pk for some b, yielding
a = pk ∗ (b ∗ q), so pk |a. Conversely let pk |a. Then a = b ∗ pk for some b. Since q |a
but not q |pk (by Lemma 7.22), by Lemma 7.21 we conclude q |b, so b = q ∗ c for some
c. From a = b∗pk = q ∗ c∗pk we conclude a/q = c∗pk, so pk |a/q. So we have proved
pk |a if and only if pk |a/q, so k(p, a) = k(p, a/q).

Combining these results yields

a = q ∗ (a/q)
= q ∗

∏
p prime p

k(p,a/q) (induction hypothesis)
= q ∗ qk(q,a/q) ∗

∏
p prime,p6=q p

k(p,a/q) (splitting product)
= qk(q,a) ∗

∏
p prime,p6=q p

k(p,a) (above observations)
=

∏
p prime p

k(p,a) (combine product),

concluding the proof. �

If a =
∏

p prime p
k(p,a) and b =

∏
p prime p

k(p,b), then it is easily checked that
a |b if and only if k(p, a) ≤ k(p, b for all prime numbers p. As a consequence we obtain

gcd(a, b) =
∏

p prime
pmin(k(p,a),k(p,b)).

For instance, 6! = 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 = 24 ∗ 32 ∗ 51 ∗ 70 and
(

8
3

)
= 6 ∗ 7 ∗ 8/(3!) =

23 ∗ 30 ∗ 50 ∗ 71, so gcd(6!,
(

8
3

)
) = 23 ∗ 30 ∗ 50 ∗ 70 = 8.

Apart from the Greatest Common Divisor ( gcd ) of two numbers a, b > 0 one
may also consider the Least Common Multiple ( lcm ): lcm(a, b) is defined to be the
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least number n such that a |n and b |n. Such a number n with a |n and b |n always
exists since a ∗ b satisfies the requirements, but a ∗ b does not need to be the smallest
one. In fact, from the above observations one easily checks

lcm(a, b) =
∏

p prime
pmax(k(p,a),k(p,b)).

Since for any two numbers k, k′ we have max(k, k′) + min(k, k′) = k + k′, we obtain

gcd(a, b) ∗ lcm(a, b) =
∏

p prime
pmin(k(p,a),k(p,b))+max(k(p,a),k(p,b))

=
∏

p prime
pk(p,a)+k(p,b) = a ∗ b

for all a, b > 0.
From these characterizations of gcd and lcm one easily derives that

c |a ∧ c |b ⇔ c |gcd(a, b)

and

a |c ∧ b |c ⇔ gcd(a, b) |c

for all numbers a, b, c > 0. As a consequence, we obtain that (N+, | ) is a lattice, in
which gcd corresponds to the infimum and lcm corresponds to the supremum.

7.6 Modular Arithmetic

7.6.1 Congruence relations

Almost everybody probably knows that the product of two even integers is even, and
that the product of two odd integers is odd. Also, the sum of two even integers is even
too, and even the sum of two odd numbers is even. The point is that, apparently,
whether the result of an operation, like addition or multiplication, is even or odd only
depends on whether the arguments of the operation are even or odd.

The proposition that integer “x is even” is equivalent to “x is divisible by 2 ”,
which in turn is equivalent to xmod2 = 0 ; similarly, the proposition “x is odd”
is equivalent to xmod2 = 1 . That the property “being even” of the sum of two
integers only depends on the “being even” of these two numbers know means that
(x+y) mod 2 only depends on xmod2 and ymod2 (and not on xdiv2 or y div2 ).
In formula this is rendered as:

(18) (x+y) mod 2 = (xmod2 + ymod2) mod 2 , for all x, y ∈Z .

Properties like these are not specific for 2 as a divisor: similar properties hold for
all positive divisors. From the chapter on relations we recall that, for every function
of type B→V , the relation, on its domain B , “having the same function value”
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is an equivalence relation. For any fixed d∈N+ , the function (modd ) that maps
every x∈Z to xmodd has type Z→ [ 0 . . d ) . This function induces an equivalence
relation, on Z , of “having the same remainder when divided by d ”. This relation
partitions Z into d different (and, as always, disjoint) equivalence classes, namely
one for every value of the function (modd ) : the equivalence class corresponding to
a∈ [ 0 . . d ) is the set

{ x∈Z | xmodd= a } ,

which can also be formulated as:

{ q ∗ d+a | q∈Z } .

In particular, of course, a ∈ { x∈Z | xmodd= a } , because amodd = a , for every
a∈ [ 0 . . d ) .

Now properties similar to (18) also hold in this case; that is, we now have:

(19) (x+y) mod d = (xmodd + ymodd ) mod d , for all x, y ∈Z .

A similar property holds for subtraction and multiplication:

(20) (x ∗ y) mod d = (xmodd ∗ ymodd ) mod d , for all x, y ∈Z .

A consequence of propositions like (19) and (20) is that equivalence is preserved un-
der arithmetic operations like addition and multiplication. Using (19) , for instance,
we can now derive, for all x, y, z ∈Z :

(21) xmodd = ymodd ⇒ (x+z) mod d = (y+z) mod d .

An equivalence relation that is preserved under a given set of operations is called
a congruence relation. In our case, the relation “having the same remainder when
divided by d ” is congruent with the operations addition, subtraction, and multi-
plication. Conversely, we also say that the operations addition, subtraction, and
multiplication are compatible with the relation.

Notation: According to mathematical tradition, the fact that x and y are
congruent modulo d is often denoted as:

x = y (mod d) .

This notation is somewhat awkward, though, because it is not very clear
what the scope is of the suffix “ (mod d) ”. Apparently, its scope extends
over the complete equality textually preceding it; that is, if we would use
some sort of brackets to delineate the scope of “(mod d)” more explicitly,
we should write something like:

|[ x = y (mod d) ]| .

Because the relation is a congruence relation and because it is not the same as
sheer equality, although it resembles it, it seems better to denote the relation
as an infix symbol resembling but different from “ = ”. For example, the
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symbol “ =mod d ” would be appropriate, as the subscript explicitly indicates
the nature of the congruence. In this text we will abbreviate this to “ =d ”;
so, by definition we now have, for all d∈N+ and x, y ∈Z :

x =d y ⇔ xmodd = ymodd .

For example, congruence property (21) can now be rendered as, for all
x, y, z ∈Z :

x =d y ⇒ x+z =d y+z .
2

Other algebraic properties are compatible with congruence modulo d too. The num-
bers 0 and 1 , for instance, are the identity elements of addition and multiplication,
respectively, and this remains so under congruence. In addition, the property that
0 is a zero-element of multiplication – that is: 0 ∗x = 0 – is retained. Finally, that
multiplication distributes over addition remains true as well.

For any given d∈N+ we can now define binary operations ⊕ and ⊗ , say, by,
for all x, y ∈Z :

x⊕ y = (x+y) mod d , and:

x⊗ y = (x ∗ y) mod d , and:

(If we would be very strict we should make the dependence on d explicit by writing
⊕d and ⊗d .) Now ⊕ and ⊗ have type [ 0 . . d )×[ 0 . . d )→ [ 0 . . d ) and with these
operators various algebraic structures can be formed, which we mention here without
further elaboration or proofs.

7.24 Theorem. For all d∈N+ :

(a) ( [ 0 . . d ) ,⊕ , 0) is a group.

(b) ( [ 0 . . d ) ,⊗ , 1) is a monoid but not a group.

(c) ( [ 1 . . d ) ,⊗ , 1) is a group if and only if d is prime.

Proof. Most monoid and group axioms are checked straightforwardly, where 0 is the
identity of ⊕ and 1 is the identity of ⊗.

In (b) it is not a group since 0 has no inverse: there is no x ∈ [ 0 . . d ) such that
x⊗0 = 1.

For (c) we also have to check that ⊗ is well-defined, that is, if a, b ∈ [ 1 . . d ) then
a⊗b should be in [ 1 . . d ) too, that is, a ∗ bmodd ∈ [ 1 . . d ). If d is not a prime, this
is not the case since we can write d = a ∗ b for a, b ∈ [ 1 . . d ), by which a ∗ bmodd =
0 6∈ [ 1 . . d ). If d is prime then well-definedness holds since if a, b ∈ [ 1 . . d ) then
a ∗ bmodd 6= 0 due to Lemma 7.21. It remains to prove that every a ∈ [ 1 . . d ) has an
inverse. Observe that gcd(a, d) = 1. By the extended Euclid’s algorithm then there
exist x, y such that x ∗ a+ y ∗ d = 1. Hence x ∗ amodd = 1, so x is the inverse of a.
�
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7.6.2 An application: the nine and eleven tests

A technique that was commonly applied to verify manual calculations is the, so-called,
nine test . This is based on the property that, in our decimal number representation,
the remainder of a number when divided by 9 can be easily calculated: it equals
the remainder of the sum of the number’s digits modulo 9 . As the sum of the digits
of a number usually is much smaller than the number itself, the problem has been
reduced. This process is repeated until a number is obtained that is less than 10 :
this last number, then, is the remainder of the original number modulo 9 , except
when it is 9 in which case the remainder is 0 , of course.

For example, the sum of the digits of the number 123456789 equals 45 , and the
sum of the digits of 45 is 9 . Hence, the remainder of 123456789 modulo 9 is 0 .

Now to verify a calculation, for instance the addition or multiplication of two
large numbers, one calculates the remainders modulo 9 of both numbers and of the
result of the calculation, and one performs the same operation, modulo 9 , to these
remainders. If the results match we can be pretty confident that our calculation was
correct, although we do not have certainty, of course. But, if the results do not match
we certainly have made an error!

* * *

The property that the remainder modulo 9 of a number equals the remainder modulo
9 of the sum of the digits of that number’s decimal representation is based on the
observation that 10mod9 = 1 . Now we have that a number like, for instance, 1437
is equal to 143 ∗ 10 + 7 . Therefore, we have:

1437 mod 9

= { above property }
(143 ∗ 10+7) mod 9

= { 10 = 9+1 }
(143 ∗ 9+143 ∗ 1+7) mod 9

= { mod over + ; multiples of 9 may be discarded and 7mod9 = 7 }
(143mod9 + 7) mod 9 .

This calculation shows that 1437 mod 9 is equal to 143 mod 9 plus 7 , modulo 9 ;
if now, by Induction Hypothesis, 143 mod 9 is equal to the sum, modulo 9 , of the
digits of 143 then 1437 mod 9 also is equal to the sum of its digits, modulo 9 .

* * *

In general, the decimal representation of natural numbers can be defined in a recursive
way, as follows. A sequence of n decimal digits “ dn−1 · · · d2d1d0 ” represents the
natural number d0 if n= 1 : in this case the sequence just is a single digit, “ d0 ”. If
n≥ 2 , the number represented by the sequence is equal to the number represented
by the sequence of n−1 digits “ dn−1 · · · d2d1 ” times 10 plus d0 .
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By means of this recursive definition it can be proved, by Mathematical Induc-
tion, of course, that the number represented by a sequence of decimal digits and the
sum of these digits are congruent modulo 9 . By means of the recursive definition
it also is possible to prove that the number represented by the sequence of digits
“ dn−1 · · · d2d1d0 ” is equal to:

(Σi : 0≤i<n : di ∗ 10i ) ,

but in most cases the recursive definition is more manageable than this expression.

* * *

In a very similar, albeit slightly more complicated way we observe that 10 is congruent
to −1 modulo 11 , and that 100mod11 is equal to 1 . This is the basis of the eleven
test : the remainder of a natural number modulo 11 is equal to the remainder modulo
11 of the sum of the digits of that number’s decimal representation, but here the
digits are added with alternating signs, starting at the least-significant digit with
a positive sign. The number 123456789 , for example, is congruent modulo 11 to:
+9−8+7−6+5−4+3−2+1 , which equals 5 .

As was the case with the nine test, the eleven test can be used to “verify” the
results of calculations.

7.7 Fermat’s little theorem

We prove the following theorem which is known as “Fermat’s little theorem”.

7.25 Theorem. For every prime number p and for every a∈N+ we have:

¬ (p |a) ⇒ ap−1 mod p = 1 .

Proof. Let p be a prime and let a∈N+ . Assume ¬ (p |a) ; this is equivalent to
amodp 6= 0 , so we have: 1 ≤ amodp < p ; that is, amodp ∈ [ 1 . . p ) . For the sake of
brevity, we define b = amodp . Now we have that ap−1 mod p is equal to bp−1 , where
b ∈ [ 1 . . p ) and bp−1 is to be interpreted in terms of ⊗ -operations, instead of ∗ .
Hence, we also have bp−1 ∈ [ 1 . . p ) .

By Theorem 7.24, part (c), we have that ( [ 1 . . p ) ,⊗ , 1) is a group, because p is
prime. The set {bi | 0≤i} together with ⊗ and 1 is the subgroup of ( [ 1 . . p ) ,⊗ , 1)
generated by b . Because the whole group is finite, of size p−1 , so is this subgroup.
Therefore, a number n∈N+ exists such that bn = 1 and bi 6= 1 , for all i : 1≤i<n .
Then we have: {bi | 0≤i} = {bi | 0≤i<n} , and n is the size of this set.

On account of Lagrange’s Theorem we conclude n | (p−1) . So, let z ∈N satisfy
p−1 = z ∗n . Now we derive:

ap−1 mod p

= { as observed above }
bp−1

= { definition of z }
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bz∗n

= { property of exponentiation }
(bn)z

= { definition of n }
1z

= { 1 is the identity of ⊗ }
1

�

7.8 Cryptography: the RSA algorithm

We conclude this chapter with a practical application of the theory, namely in the
area of cryptography , which is the art of transmitting messages in a secure way, such
that these messages cannot be read by anyone else than the intended receiver. For this
purpose the messages are encrypted in such a way that they become unintelligible,
except for the intended receiver who is the only one able to decipher the messages.

The algorithms for encryption and decryption themselves usually are not kept
secret, but the parameters used in the process are. In cryptography such parameters
usually are called keys.

Here we discuss the, so-called, RSA-algorithm, named after its inventors: Rivest,
Shamir, and Adleman. This is an example of a so-called public key system. This
means that the keys needed for encryption and decryption are chosen by the receiver
of the messages, and the receiver makes the encryption key publicly known: everybody
who wishes to send a message to this particular receiver now can use this public
encryption key. The security of this arrangement is based on the assumption that it is
(virtually) impossible to infer the (secret) decryption key from the (public) encryption
key.

In older encryption schemes the encryption and decryption keys used to be chosen
by the sender of the messages, and the sender now was faced with the problem how
to communicate the decryption key to the intended receiver(s) in a secure way. In a
public key system this difficulty is avoided.

The security of the RSA-algorithm rest on the assumption that it is very hard
to factorize very large numbers into their prime factors. Here “very large numbers”
means: numbers the decimal representation of which comprises several hundreds of
digits.

* * *

The RSA-algorithm is based in two very large prime numbers p and q . Let n = p ∗ q .
Let a be any positive natural number not divisible by p or q. Then, by Fermat’s little
theorem, we have:

ap−1 mod p = 1 ∧ aq−1 mod q = 1 .
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From this it follows that we also have, because 1p−1 and 1q−1 are equal to 1 :

a(p−1)∗(q−1) mod p = 1 ∧ a(p−1)∗(q−1) mod q = 1 .

So a(p−1)∗(q−1) − 1 is divisible by both p and q, so also by p ∗ q since p and q are
prime. So

(22) a(p−1)∗(q−1) mod n = 1 .

For every k ≥ 0 we have 1k = 1, so

ak∗(p−1)∗(q−1)+1 modn = a.

Now encryption of a secret message works as follows. Choose an encryption
number e with gcd(e, (p − 1) ∗ (q − 1)) = 1. Represent the message by a number
M , with 0 < M < n, not divisible by p or q, for instance, the number of which
the binary representation is the sequence of bits of the message. Now the encrypted
message is Me modn. By the extended Euclid’s algorithm find numbers d, k such that
d ∗ e− k ∗ (p− 1) ∗ (q − 1) = 1. Now we obtain

(Me)d modn = Md∗e modn = Mk∗(p−1)∗(q−1)+1 modn = M.

If some person A wants to receive a secret message from B then A chooses two
large prime numbers p, q, computes n = p ∗ q, chooses a corresponding value e and
sends n, e to B in a non-safe way, by which also intruders may know n, e. Next B
takes its secret message M , and computes M ′ = Me modn (encryption), and sends
M ′ to A in a non-safe way, by which also intruders may know M ′. Now A can decrypt
M ′ to M by computing d as presented above, and computing M ′d modn = M . The
crucial point is that knowledge of both p and q are required to do this computation,
so intruders that may know n, e,M ′ have no clue how to construct the secret message
M . Safety and feasibility of this approach depend on the following assumptions:

• if you know n = p ∗ q, there is no feasible way to establish p and q,

• the extended Euclid’s algorithm is feasible, even for n having thousands of digits,

• for numbers a, b, n of thousands of digits each, computation of ab modn is feasi-
ble.

For computing ab modn clearly ab should not be computed since this number can
never be stored: probably the number of digits of this number exceeds the number of
atoms in the universe. Also not b times a multiplication with a should be executed,
since b is far too large. But by carefully combining squaring and multiplying by a,
and reducing all intermediate result modulo n, computing ab modn is feasible.

Although there is no formal proof that when knowing n, e,M ′ it is not feasible to
compute M , it has turned out to be safe in practice. The RSA algorithm was proposed
by Rivest, Shamir and Adleman in 1977. In that time taking prime numbers of 100
digits was safe. However, both to increasing computational power and improved
algorithms the approach is currently not safe any more for 100 digits, but for 1000
digits it is.
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7.9 Exercises

1. Let a, d∈Z and d 6= 0 . Assuming that a is divisible by d , prove that the value
q satisfying a = q ∗ d is unique.

2. (a) What are the divisors of 1 ? Prove the correctness of your answer.

(b) Prove (∀a, d : a∈Z ∧ d∈N+2 : d |a ⇒ ¬ (d | (a+1)) ) .

(c) Prove (∀a, b, d : a, b∈Z ∧ d 6= 0 : d |a ∨ d |b ⇒ d | (a∗b) ) .

(d) Give a simple counter-example illustrating that Lemma 7.21 does not hold
if p is not prime, for every p∈N+2 .

3. Prove the following properties of div and mod , using Definition 7.5 ; it is given
that d∈N+ and that a, b, x∈Z :

(a) 0≤ a< d ⇔ (amodd) = a

(b) 0≤ a< d ⇔ (adivd) = 0

(c) 0≤ a ⇔ 0≤ adivd

(d) (a+d) modd = amodd

(e) (a+d) divd = (adivd) +1

(f) (a+x ∗d) modd = amodd

(g) (a+x ∗d) divd = (adivd) +x

(h) (amodd) modd = amodd

(i) (amodd) divd = 0

(j) (a+b) modd = (amodd + bmodd ) mod d

(k) (a+b) divd = (adivd) + (bdivd) + (amodd+ bmodd) divd

(l) Give (simple) counter examples illustrating that (a+b) modd is not nec-
essarily equal to amodd+ bmodd , and that (a+b) divd is not necessarily
equal to adivd+ bdivd .

(m) (a ∗ b) modd = ( (amodd) ∗ (bmodd) ) mod d

(n) amodd = 0 ⇔ d |a
(o) amodd = 0 ⇔ adivd = a/d

(p) 1≤a ⇔ adivd< a , provided that 2≤ d

(q) amodd = bmodd ⇔ (a−b) mod d = 0

(r) Determine (−1)divd en (−1)modd

4. Given are c, d∈N+ . Prove that for all a∈Z :
(a ∗ d) mod (c ∗ d) = (amodc) ∗ d and:

(a ∗ d) div (c ∗ d) = adivc .

5. (a) Determine the gcd of the numbers 112 and 280 .
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(b) Determine numbers x and y satisfying: x∗112 + y∗280 = gcd (112 , 280) .

6. Determine, by hand, all prime numbers between 100 and 200 .

7. Prove that x ∗ (x+1) ∗ (x+2) is divisible by 6 , for all x∈Z .

8. Prove that (x2−1)mod8 ∈ {0 , 3 , 7} , for all x∈Z .

9. Resolve 8!− 3 ∗ 7! into prime factors.

10. Determine the lcm of the numbers 1500000021 and 3000000045 .

11. Find integers x, y such that 100 ∗ x+ 17 ∗ y = 1.

12. Find an integer x such that 0 < x < 144 and 83 ∗ xmod144 = 1.

13. Find integers x, y such that 111 ∗ x+ 27 ∗ y = 5.

14. We consider the number whose decimal representation consists of 38 digits 1 .
We call this number X .

(a) Give a, formally correct, mathematical expression for X .
(b) What is the remainder of the division of x by 9 ?
(c) What is the remainder of the division of x by 11 ?
(d) What is the remainder of the division of x by 99 ?

15. Determine all values x∈Z satisfying both: x= 2 (mod 11) and: x= 3 (mod 23) .

16. Resolve
(

17
5

)
into prime factors.

17. Determine the gcd and lcm of
(

17
5

)
and

(
18
4

)
.

18. Prove that (n+1) ∗ (n+2) ∗ · · · ∗ (n+k) is divisible by k! , for all n, k ∈N .

19. Prove that a natural number is divisible by 4 if and only if, in the representation
of that number in base 17 , the sum of the digits is divisible by 4 .

20. We know that 37 ∗ 43 = 1591 . Determine e∈N in such a way that, for all m∈Z ,
we have: m127∗e =1591 m .

21. Represent the number 1000 in base m , for every m ∈ {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10} .

22. What is the period of the recurring decimal fraction that represents 1/1001001 ?

23. For a natural number n > 10 it is given that 2n modn = 5. Prove that n is not
a prime number.

24. Determine all prime numbers p with the property that 33 ∗ p+ 1 is a square.

25. A given number requires 10 (ternary) digits for its ternary representation. How
many digits are needed to represent this number in the decimal system?


